Molecular characterization of human hepatic lipase deficiency. In vitro expression of two naturally occurring mutations.
نویسندگان
چکیده
Individuals with hepatic lipase (HL) deficiency are often characterized by elevated levels of triglycerides and cholesterol and may be subject to premature atherosclerosis. Missense mutations in the HL gene have been identified in two affected families: substitutions of serine for phenylalanine at amino acid 267 and threonine for methionine at amino acid 383 (S267F and T383M, respectively). To confirm the role of S267F and T383M, respectively). To confirm the role of mutations separately into human HL cDNA by site-directed mutagenesis, and the resulting constructs were independently expressed in COS cells. HL activity and mass were measured and compared with wild-type HL transfectants to determine the effect of these mutations on lipase activity and secretion. Although similar amounts of HL protein were detected intracellularly after transfection with the wild-type and mutant constructs, S267F and T383M HL activity levels were markedly decreased: in S267F, no HL activity was detected, and activity levels in T383M were 38% of wild-type HL. Heparin-induced secretion of the two HL mutants was also severely affected: no detectable activity could be measured in the media of S267F, although some inactive mass (12% of wild-type HL) was secreted; mutant T383M secreted 4% and 20% of wild-type activity and mass, respectively. These results indicate that the single amino acid substitution present in HL S267F is sufficient to render the enzyme completely nonfunctional; in contrast, the T383M mutant retains partial activity but is poorly secreted. Thus, these defects appear capable of accounting for the HL-deficient phenotypes exhibited by individuals carrying the T383M and S267F mutations.
منابع مشابه
Molecular and Clinical Characterization of 7 Iranian Patients with Severe Congenital Factor V Deficiency: Identification of 4 Novel Mutations
Background and Aims: Congenital factor V (FV) deficiency is a rare bleeding disorder with 1 in 1000000 persons in the general population. Individuals with FV activity <1% and very low FV antigen levels are characterized as severe FV deficient patients. Little data is available about the molecular basis of this bleeding disorder in Iran. Materials and Methods: We analyzed 7 unrelated Iranian FV...
متن کاملReovirus oncolysis: a brief insight on molecular mechanism and immunological aspect
Abstract : Reovirus (respiratory enteric orphan virus), a naturally occurring benign human pathogen, has an inherent ability to target transformed and cancerous cells and cause their lysis, while leaving non-transformed cells relatively unaffected. The efficiency of this innate oncolytic activity of reovirus correlates with expression of the ras oncogene. Cells expressing ac...
متن کاملFunctional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملEmbryonic viability, lipase deficiency, hypertriglyceridemia and neonatal lethality in a novel LMF1-deficient mouse model
BACKGROUND Lipase Maturation Factor 1 (LMF1) is an ER-chaperone involved in the post-translational maturation and catalytic activation of vascular lipases including lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). Mutations in LMF1 are associated with lipase deficiency and severe hypertriglyceridemia indicating the critical role of LMF1 in plasma lipid homeostasis. The...
متن کاملBacterial Expression and Functional Characterization of A Naturally Occurring Exon6-less Preprochymosin cDNA
Chymosin (Rennin EC 3.4.23.4), an aspartyl proteinase, is the major proteolytic enzyme in the fourthstomach of the unweaned calf, and it is formed by proteolytic activation of its zymogene, prochymosin.Following the cloning of synthesized cDNAs on mRNA pools extracted from the mucosa of the calf fourthstomach, we have identified an alternatively spliced form of preprochymosin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis and thrombosis : a journal of vascular biology
دوره 14 3 شماره
صفحات -
تاریخ انتشار 1994